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Abstract

The Atlantic margin offshore Morocco can be characterized as a frontier area where hydrocarbon exploration is very immature.
While the onshore Essaouira Basin hosts some small fields, offshore exploration resulted in sub-commercial discoveries only.
Recent deepwater wells failed to find viable reservoirs so far, however, numerous hydrocarbon shows have been encountered,
and a variety of different potential traps are related to salt tectonics. In addition, the relative success of the conjugate Atlantic
margin of Nova Scotia is encouraging. The Atlantic margin offshore Morocco recently gained the interest of international oil
companies again, and an aggressive drilling program is planned for 2014. In the presented work, we used a crustal-scale model
based on recently acquired 2D seismic reflection data (MIRROR experiment, 2011) for regional thermal modeling to investigate
the temporal evolution of temperature and thermal maturity at potential source rock levels. The modeling took into account the
geodynamic evolution from Early Mesozoic rifting and continental break-up to major Cenozoic events, such as the Canary
Island hot spot and the Atlas orogeny. In a further analysis of the salt basin, we performed structural restoration, describing the
diapiric salt rise and extrusion, and integrating the process of salt withdrawal and associated sediment deformation. Based on the
obtained model, we carried out petroleum systems modeling to predict potential scenarios of source rock maturation,
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hydrocarbon expulsion, migration, and accumulations in the context of the salt deformation through geologic time. The elements
(source, reservoir, and seal rocks) and dynamic processes (trap formation, charge, and preservation) of different potential
petroleum systems are discussed, and promising salt-related and other play types will be presented.
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Salt Basin — Petroleum Systems Model
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Salt Basin — Petroleum Systems Model
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Salt Basin — Petroleum Systems Model

0 25 50 75 100
NERRNERNRNNRRECCNIn

Transformation ratio [%]

2000 m

Early Cenozoic
+ Burial of the canopies
» Deposition of Eocene source rocks

m PetroMod* TecLink 10 km




Salt Basin — Petroleum Systems Model
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Salt Basin — Uncertainty Analysis S
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Salt Basin — Uncertainty Analysis
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=> Potential (expulsion versus trap/seal) timing issues!!
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Conclusions for Exploration
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